NumPy, which stands for Numerical Python. It is a library consisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed. This tutorial explains the basics of NumPy such as its architecture and environment. It also discusses the various array functions, types of indexing, etc. An introduction to Matplotlib is also provided. All this is explained with the help of examples for better understanding.
This tutorial has been prepared for those who want to learn about the basics and various functions of NumPy. It is specifically useful for algorithm developers. After completing this tutorial, you will find yourself at a moderate level of expertise from where you can take yourself to higher levels of expertise.
NumPy is a Python package. It stands for 'Numerical Python'. It is a library consisting of multidimensional array objects and a collection of routines for processing of array.
Numeric, the ancestor of NumPy, was developed by Jim Hugunin. Another package Numarray was also developed, having some additional functionalities. In 2005, Travis Oliphant created NumPy package by incorporating the features of Numarray into Numeric package. There are many contributors to this open source project.
Using NumPy, a developer can perform the following operations −
Mathematical and logical operations on arrays.
Fourier transforms and routines for shape manipulation.
Operations related to linear algebra. NumPy has in-built functions for linear algebra and random number generation.
NumPy – A Replacement for MatLab NumPy is often used along with packages like SciPy (Scientific Python) and Mat−plotlib (plotting library). This combination is widely used as a replacement for MatLab, a popular platform for technical computing. However, Python alternative to MatLab is now seen as a more modern and complete programming language.
It is open source, which is an added advantage of NumPy.
Standard Python distribution doesn't come bundled with NumPy module. A lightweight alternative is to install NumPy using popular Python package installer, pip.
pip install numpy
The best way to enable NumPy is to use an installable binary package specific to your operating system. These binaries contain full SciPy stack (inclusive of NumPy, SciPy, matplotlib, IPython, SymPy and nose packages along with core Python).
Windows Anaconda is a free Python distribution for SciPy stack. It is also available for Linux and Mac.
Python (x,y): It is a free Python distribution with SciPy stack and Spyder IDE for Windows OS.
Linux Package managers of respective Linux distributions are used to install one or more packages in SciPy stack.
For Ubuntu
sudo apt-get install python-numpy
python-scipy python-matplotlibipythonipythonnotebook python-pandas
python-sympy python-nose
If you are more comfortable learning through video tutorials then we would recommend that you subscribe to our YouTube channel.
When going through coding examples, it's quite common to have doubts and errors.
If you have doubts about some code examples or are stuck somewhere when trying our code, send us an email at coderzcolumn07@gmail.com. We'll help you or point you in the direction where you can find a solution to your problem.
You can even send us a mail if you are trying something new and need guidance regarding coding. We'll try to respond as soon as possible.
If you want to